Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Microbiol Spectr ; 12(2): e0336723, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38214523

RESUMO

Shewanella is a prevalent bacterial genus in deep-sea environments including marine sediments, exhibiting diverse metabolic capabilities that indicate its significant contributions to the marine biogeochemical cycles. However, only a few Shewanella phages were isolated and deposited in the NCBI database. In this study, we report the isolation and characterization of a novel Shewanella phage, vB_SbaS_Y11, that infects Shewanella KR11 and was isolated from the sewage in Qingdao, China. Transmission electron microscopy revealed that vB_SbaS_Y11 has an icosahedral head and a long tail. The genome of vB_SbaS_Y11 is a linear, double-stranded DNA with a length of 62,799 bp and a G+C content of 46.9%, encoding 71 putative open reading frames. No tRNA genes or integrase-related feature genes were identified. An uncharacterized anti-CRISPR AcrVA2 gene was detected in its genome. Phylogenetic analysis based on the amino acid sequences of whole genomes and comparative genomic analyses indicate that vB_SbaS_Y11 has a novel genomic architecture and shares low similarity to Pseudomonas virus H66 and Pseudomonas phage F116. vB_SbaS_Y11 represents a potential new family-level virus cluster with eight metagenomic assembled viral genomes named Ranviridae.IMPORTANCEThe Gram-negative Shewanella bacterial genus currently includes about 80 species of mostly aquatic Gammaproteobacteria, which were isolated around the globe in a multitude of environments, such as freshwater, seawater, coastal sediments, and the deepest trenches. Here, we present a Shewanella phage vB_SbaS_Y11 that contains an uncharacterized anti-CRISPR AcrVA2 gene and belongs to a potential virus family, Ranviridae. This study will enhance the knowledge about the genome, diversity, taxonomic classification, and global distribution of Shewanella phage populations.


Assuntos
Bacteriófagos , Shewanella , Bacteriófagos/genética , Shewanella/genética , Filogenia , Análise de Sequência de DNA , Genoma Viral , Fases de Leitura Aberta , DNA Viral/genética
2.
Nat Plants ; 10(2): 240-255, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38278954

RESUMO

We present chromosome-level genome assemblies from representative species of three independently evolved seagrass lineages: Posidonia oceanica, Cymodocea nodosa, Thalassia testudinum and Zostera marina. We also include a draft genome of Potamogeton acutifolius, belonging to a freshwater sister lineage to Zosteraceae. All seagrass species share an ancient whole-genome triplication, while additional whole-genome duplications were uncovered for C. nodosa, Z. marina and P. acutifolius. Comparative analysis of selected gene families suggests that the transition from submerged-freshwater to submerged-marine environments mainly involved fine-tuning of multiple processes (such as osmoregulation, salinity, light capture, carbon acquisition and temperature) that all had to happen in parallel, probably explaining why adaptation to a marine lifestyle has been exceedingly rare. Major gene losses related to stomata, volatiles, defence and lignification are probably a consequence of the return to the sea rather than the cause of it. These new genomes will accelerate functional studies and solutions, as continuing losses of the 'savannahs of the sea' are of major concern in times of climate change and loss of biodiversity.


Assuntos
Alismatales , Zosteraceae , Alismatales/genética , Zosteraceae/genética , Ecossistema
3.
Int Microbiol ; 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38190086

RESUMO

Sulfitobacter is a bacterium recognized for its production of AMP-independent sulfite oxidase, which is instrumental in the creation of sulfite biosensors. This capability underscores its ecological and economic relevance. In this study, we present a newly discovered phage, Sulfitobacter phage vB_SupP_AX, which was isolated from Maidao of Qingdao, China. The vB_SupP_AX genome is linear and double-stranded and measures 75,445 bp with a GC content of 49%. It encompasses four transfer RNA (tRNA) sequences and 79 open reading frames (ORFs), one of which is an auxiliary metabolic gene encoding thioredoxin. Consistent with other N4-like phages, vB_SupP_AX possesses three distinct RNA polymerases and is characterized by the presence of four tRNA molecules. Comparative genomic and phylogenetic analyses position vB_SupP_AX and three other viral genomes from the Integrated Microbial Genomes/Virus v4 database within the Rhodovirinae virus subfamily. The identification of vB_SupP_AX enhances our understanding of virus-host interactions within marine ecosystems.

4.
mSystems ; 8(5): e0019723, 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37702511

RESUMO

IMPORTANCE: The findings of this study are significant, as N4-like viruses represent a unique viral lineage with a distinct replication mechanism and a conserved core genome. This work has resulted in a comprehensive global map of the entire N4-like viral lineage, including information on their distribution in different biomes, evolutionary divergence, genomic diversity, and the potential for viral-mediated host metabolic reprogramming. As such, this work significantly contributes to our understanding of the ecological function and viral-host interactions of bacteriophages.


Assuntos
Bacteriófagos , Vírus , Genoma Viral/genética , Filogenia , Vírus/genética , Bacteriófagos/genética , Genômica
5.
Microbiol Spectr ; : e0191223, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37728551

RESUMO

Viruses play crucial roles in the ecosystem by modulating the host community structure, mediating biogeochemical cycles, and compensating for the metabolism of host cells. Mariana Trench, the world's deepest hadal habitat, harbors a variety of unique microorganisms that have adapted to its extreme conditions of low temperatures, high pressure, and nutrient scarcity. However, our knowledge about isolated hadal phage strains in the hadal trench is still limited. This study reported the discovery of a temperate phage, vB_HmeY_H4907, infecting Halomonas meridiana H4907, isolated from surface sediment from the Mariana Trench at a depth of 8,900 m. To our best knowledge, it is the deepest isolated siphovirus from the ocean. Its 40,452 bp linear dsDNA genome has 57.64% GC content and 55 open reading frames, and it is highly homologous to its host. Phylogenetic analysis and average nucleotide sequence identification reveal that vB_HmeY_H4907 is separated from the isolated phages and represents a new family, Suviridae, with eight predicted proviruses and six uncultured viral genomes. They are widely distributed in the ocean, suggesting a prevalence of this viral family in the deep sea. These findings expand our understanding of the phylogenetic diversity and genomic features of hadal lysogenic phages, provide essential information for further studies of phage-host interactions and evolution, and may reveal new insights into the lysogenic lifestyles of viruses inhabiting the hadal ocean. IMPORTANCE Halomonas phage vB_HmeY_H4907 is the deepest isolated siphovirus from the ocean, and it represents a novel abundant viral family in the ocean. This study provides insights into the genomic, phylogenetic, and ecological characteristics of the new viral family, namely, Suviridae.

6.
Virus Res ; 336: 199226, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37739268

RESUMO

Stutzerimonas stutzeri is an opportunistic pathogenic bacterium belonging to the Gammaproteobacteria, exhibiting wide distribution in the environment and playing significant ecological roles such as nitrogen fixation or pollutant degradation. Despite its ecological importance, only two S. stutzeri phages have been isolated to date. Here, a novel S. stutzeri phage, vB_PstS_ZQG1, was isolated from the surface seawater of Qingdao, China. Transmission electron microscopy analysis indicates that vB_PstS_ZQG1 has a morphology characterized by a long non-contractile tail. The genomic sequence of vB_PstS_ZQG1 contains a linear, double-strand 61,790-bp with the G+C content of 53.24% and encodes 90 putative open reading frames. Two auxiliary metabolic genes encoding TolA protein and nucleotide pyrophosphohydrolase were identified, which are likely involved in host adaptation and phage reproduction. Phylogenetic and comparative genomic analyses demonstrated that vB_PstS_ZQG1 exhibits low similarity with previously isolated phages or uncultured viruses (average nucleotide identity values range from 21.7 to 29.4), suggesting that it represents a novel viral genus by itself, here named as Fuevirus. Biogeographic analysis showed that vB_PstS_ZQG1 was only detected in epipelagic and mesopelagic zone with low abundance. In summary, our findings of the phage vB_PstS_ZQG1 will provide helpful insights for further research on the interactions between S. stutzeri phages and their hosts, and contribute to discovering unknown viral sequences in the metagenomic database.


Assuntos
Bacteriófagos , Filogenia , Análise de Sequência de DNA , Genoma Viral , Myoviridae , Genômica , Nucleotídeos
7.
Fish Shellfish Immunol Rep ; 4: 100101, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37397801

RESUMO

Pandanus tectorius leaf extract effect on the White-leg shrimp Penaeus vannamei tolerance against Vibrio parahaemolyticus were investigated in this study. Thirty shrimp post-larvae measured at approximately 1 cm were exposed for 24 h to 0.5, 1, 2, 3, 4, 5 and 6 g/L leaf extract and subsequently observed for survival and immune-related genes expression (Hsp70, ProPO, peroxinectin, penaeidin, crustin and transglutaminase), followed by determination of their tolerance and histological tissue profiles upon Vibrio challenge. Survival of shrimps treated with 6 g/L of leaf extract improved by up to 95% to controls. Hsp70, crustin, and prophenoloxidase mRNA levels were observed to be 8.5, 10.4, and 1.5-fold higher, respectively. Histopathological analysis of the hepatopancreas and the muscle tissues revealed major tissue degeneration in Vibrio-challenged shrimps but not in shrimps primed with P. tectorius leaf extract. Of all the dose examined, the best pathogen resistance results were obtained with a 24 h incubation of shrimp in 6 g/L P. tectorius methanolic leaf extract. The tolerance towards V. parahaemolyticus might be associated with the increased regulation of Hsp70, prophenoloxidase and crustin upon exposure to the extract, all immune-related proteins essential for pathogen elimination in Penaeid shrimp. The present study primarily demonstrated that P. tectorius leaf extract is a viable alternative for enhancing P. vannamei post-larvae resistance against V. parahaemolyticus, a major bacterial pathogen in aquaculture.

8.
Virus Res ; 334: 199183, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37499764

RESUMO

Stutzerimonas stutzeri is an opportunistic pathogen widely distributed in the environment and displays diverse metabolic capabilities. In this study, a novel lytic S. stutzeri phage, named vB_PstM_ZRG1, was isolated from the seawater in the East China Sea (29°09'N, 123°39'E). vB_PstM_ZRG1 was stable at temperatures ranging from -20°C to 65°C and across a wide range of pH values from 3 to 10. The genome of vB_PstM_ZRG1 was determined to be a double-stranded DNA with a genome size of 52,767 bp, containing 78 putative open reading frames (ORFs). Three auxiliary metabolic genes encoded by phage vB_PstM_ZRG1 were predicted, including Toll/interleukin-1 receptor (TIR) domain, proline-alanine-alanine-arginine (PAAR) protein and SGNH (Ser-Gly-Asn-His) family hydrolase, especially TIR domain is not common in isolated phages. Phylogenic and network analysis showed that vB_PstM_ZRG1 has low similarity to other phage genomes in the GenBank and IMG/VR database, and might represent a novel viral genus, named Elithevirus. Additionally, the distribution map results indicated that vB_PstM_ZRG1 could infect both extreme colds- and warm-type hosts in the marine environment. In summary, our finding provided basic information for further research on the relationship between S. stutzeri and their phages, and expanded our understanding of genomic characteristics, phylogenetic diversity and distribution of Elithevirus.


Assuntos
Bacteriófagos , Filogenia , Genoma Viral , Genômica , Análise de Sequência de DNA , Fases de Leitura Aberta
9.
Microbiol Spectr ; 11(4): e0533522, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37272818

RESUMO

Psychrobacter is an important bacterial genus that is widespread in Antarctic and marine environments. However, to date, only two complete Psychrobacter phage sequences have been deposited in the NCBI database. Here, the novel Psychrobacter phage vB_PmaS_Y8A, infecting Psychrobacter HM08A, was isolated from sewage in the Qingdao area, China. The morphology of vB_PmaS_Y8A was characterized by transmission electron microscopy, revealing an icosahedral head and long tail. The genomic sequence of vB_PmaS_Y8A is linear, double-stranded DNA with a length of 40,226 bp and 44.1% G+C content, and encodes 69 putative open reading frames. Two auxiliary metabolic genes (AMGs) were identified, encoding phosphoadenosine phosphosulfate reductase and MarR protein. The first AMG uses thioredoxin as an electron donor for the reduction of phosphoadenosine phosphosulfate to phosphoadenosine phosphate. MarR regulates multiple antibiotic resistance mechanisms in Escherichia coli and is rarely found in viruses. No tRNA genes were identified and no lysogeny-related feature genes were detected. However, many similar open reading frames (ORFs) were found in the host genome, which may indicate that Y8A also has a lysogenic stage. Phylogenetic analysis based on the amino acid sequences of whole genomes and comparative genomic analysis indicate that vB_PmaS_Y8A contains a novel genomic architecture similar only to that of Psychrobacter phage pOW20-A, although at a low similarity. vB_PmaS_Y8A represents a new family-level virus cluster with 22 metagenomic assembled viral genomes, here named Minviridae. IMPORTANCE Although Psychrobacter is a well-known and important bacterial genus that is widespread in Antarctic and marine environments, genetic characterization of its phages is still rare. This study describes a novel Psychrobacter phage containing an uncharacterized antibiotic resistance gene and representing a new virus family, Minviridae. The characterization provided here will bolster current understanding of genomes, diversity, evolution, and phage-host interactions in Psychrobacter populations.


Assuntos
Bacteriófagos , Psychrobacter , Bacteriófagos/genética , Psychrobacter/genética , Filogenia , Fosfoadenosina Fosfossulfato , DNA Viral/genética , Genoma Viral , Escherichia coli/genética , Fases de Leitura Aberta
11.
Mar Life Sci Technol ; 5(2): 271-285, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37275543

RESUMO

Pseudoalteromonas, with a ubiquitous distribution, is one of the most abundant marine bacterial genera. It is especially abundant in the deep sea and polar seas, where it has been found to have a broad metabolic capacity and unique co-existence strategies with other organisms. However, only a few Pseudoalteromonas phages have so far been isolated and investigated and their genomic diversity and distribution patterns are still unclear. Here, the genomes, taxonomic features and distribution patterns of Pseudoalteromonas phages are systematically analyzed, based on the microbial and viral genomes and metagenome datasets. A total of 143 complete or nearly complete Pseudoalteromonas-associated phage genomes (PSAPGs) were identified, including 34 Pseudoalteromonas phage isolates, 24 proviruses, and 85 Pseudoalteromonas-associated uncultured viral genomes (UViGs); these were assigned to 47 viral clusters at the genus level. Many integrated proviruses (n = 24) and filamentous phages were detected (n = 32), suggesting the prevalence of viral lysogenic life cycle in Pseudoalteromonas. PSAPGs encoded 66 types of 249 potential auxiliary metabolic genes (AMGs) relating to peptidases and nucleotide metabolism. They may also participate in marine biogeochemical cycles through the manipulation of the metabolism of their hosts, especially in the phosphorus and sulfur cycles. Siphoviral and filamentous PSAPGs were the predominant viral lineages found in polar areas, while some myoviral and siphoviral PSAPGs encoding transposase were more abundant in the deep sea. This study has expanded our understanding of the taxonomy, phylogenetic and ecological scope of marine Pseudoalteromonas phages and deepens our knowledge of viral impacts on Pseudoalteromonas. It will provide a baseline for the study of interactions between phages and Pseudoalteromonas in the ocean. Supplementary Information: The online version contains supplementary material available at 10.1007/s42995-022-00160-z.

12.
Front Microbiol ; 14: 1161265, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37213492

RESUMO

Introduction: Vibrio is an important bacterial genus containing many pathogenic species. Although more and more Vibrio phages were isolated, the genome, ecology and evolution of Vibrio phages and their roles in bacteriophage therapy, have not been fully revealed. Methods: Novel Vibrio phage vB_ValR_NF infecting Vibrio alginolyticus was isolated from the coastal waters of Qingdao during the Ulva prolifera blooms, Characterization and genomic feature of phage vB_ValR_NF has been analysed using phage isolation, sequencing and metagenome method. Results and Discussion: Phage vB_ValR_NF has a siphoviral morphology (icosahedral head 114±1 nm in diameter; a tail length of 231±1 nm), a short latent period (30 minutes) and a large burst size (113 virions per cell), and the thermal/pH stability study showed that phage vB_ValR_NF was highly tolerant to a range of pHs (4-12) and temperatures (-20 - 45 °C), respectively. Host range analysis suggests that phage vB_ValR_NF not only has a high inhibitory ability against the host strain V. alginolyticus, but also can infect 7 other Vibrio strains. In addition, the phage vB_ValR_NF has a double-stranded 44, 507 bp DNA genome, with 43.10 % GC content and 75 open reading frames. Three auxiliary metabolic genes associated with aldehyde dehydrogenase, serine/threonine protein phosphatase and calcineurin-like phosphoesterase were predicted, might help the host V. alginolyticus occupy the survival advantage, thus improving the survival chance of phage vB_ValR_NF under harsh conditions. This point can be supported by the higher abundance of phage vB_ValR_NF during the U. prolifera blooms than in other marine environments. Further phylogenetic and genomic analysis shows that the viral group represented by Vibrio phage vB_ValR_NF is different from other well-defined reference viruses, and can be classified into a new family, named Ruirongviridae. In general, as a new marine phage infecting V. alginolyticus, phage vB_ValR_NF provides basic information for further molecular research on phage-host interactions and evolution, and may unravel a novel insight into changes in the community structure of organisms during the U. prolifera blooms. At the same time, its high tolerance to extreme conditions and excellent bactericidal ability will become important reference factors when evaluating the potential of phage vB_ValR_NF in bacteriophage therapy in the future.

13.
Animals (Basel) ; 13(7)2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-37048496

RESUMO

A scientometric analysis was conducted to investigate the trends and development of crayfish research in terms of literature published, author, affiliation, and countries' collaborative networks, as well as the co-citation dataset (e.g., author, article, and keywords). The study analyzed 12,039 bibliographic datasets from the Web of Science, using CiteSpace as a tool for the co-citation analysis. The study revealed extraordinary increases in publication trends, with a total of 21,329 authors involved in approximately 80% of countries around the world (163/195) having conducted crayfish research. Unsurprisingly, countries such as the USA and China, followed by European countries, were among the top countries that have published crayfish-related studies. The findings also indicated that "invasive crayfish" was the world's top keyword for crayfish research. Crayfish species are important for both environmental sustainability (invasiveness and species composition) and social wellbeing (aquaculture), which provides directions for research, philanthropic, academic, government, and non-government organizations regarding how to invest limited resources into policies, programs, and research towards the future management of this species. Our study concluded that strategic collaboration among authors, institutions, and countries would be vital to tackle the issue of invasive crayfish species around the world.

14.
Appl Environ Microbiol ; 89(4): e0189622, 2023 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-36975807

RESUMO

The marine bacterial family Oceanospirillaceae, is well-known for its ability to degrade hydrocarbons and for its close association with algal blooms. However, only a few Oceanospirillaceae-infecting phages have been reported thus far. Here, we report on a novel Oceanospirillum phage, namely, vB_OsaM_PD0307, which has a 44,421 bp linear dsDNA genome and is the first myovirus infecting Oceanospirillaceae. A genomic analysis demonstrated that vB_OsaM_PD0307 is a variant of current phage isolates from the NCBI data set but that it has similar genomic features to two high-quality, uncultured viral genomes identified from marine metagenomes. Hence, we propose that vB_OsaM_PD0307 can be classified as the type phage of a new genus, designated Oceanospimyovirus. Additionally, metagenomic read mapping results have further shown that Oceanospimyovirus species are widespread in the global ocean, display distinct biogeographic distributions, and are abundant in polar regions. In summary, our findings expand the current understanding of the genomic characteristics, phylogenetic diversity, and distribution of Oceanospimyovirus phages. IMPORTANCE Oceanospirillum phage vB_OsaM_PD0307 is the first myovirus found to infect Oceanospirillaceae, and it represents a novel abundant viral genus in polar regions. This study provides insights into the genomic, phylogenetic, and ecological characteristics of the new viral genus, namely Oceanospimyovirus.


Assuntos
Bacteriófagos , Oceanospirillaceae , Filogenia , Clima Frio , Genômica , Genoma Viral
15.
mSystems ; 8(2): e0121122, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-36815859

RESUMO

The world's largest macroalgal green tide, caused by Ulva prolifera, has resulted in serious consequences for coastal waters of the Yellow Sea, China. Although viruses are considered to be one of the key factors in controlling microalgal bloom demise, understanding of the relationship between viral communities and the macroalgal green tide is still poor. Here, a Qingdao coastal virome (QDCV) time-series data set was constructed based on the metagenomic analysis of 17 DNA viromes along three coastal stations of the Yellow Sea, covering different stages of the green tide from Julian days 165 to 271. A total of 40,076 viral contigs were detected and clustered into 28,058 viral operational taxonomic units (vOTUs). About 84% of the vOTUs could not be classified, and 62% separated from vOTUs in other ecosystems. Green tides significantly influenced the spatiotemporal dynamics of the viral community structure, diversity, and potential functions. For the classified vOTUs, the relative abundance of Pelagibacter phages declined with the arrival of the bloom and rebounded after the bloom, while Synechococcus and Roseobacter phages increased, although with a time lag from the peak of their hosts. More than 80% of the vOTUs reached peaks in abundance at different specific stages, and the viral peaks were correlated with specific hosts at different stages of the green tide. Most of the viral auxiliary metabolic genes (AMGs) were associated with carbon and sulfur metabolism and showed spatiotemporal dynamics relating to the degradation of the large amount of organic matter released by the green tide. IMPORTANCE To the best of our knowledge, this study is the first to investigate the responses of viruses to the world's largest macroalgal green tide. It revealed the spatiotemporal dynamics of the unique viral assemblages and auxiliary metabolic genes (AMGs) following the variation and degradation of Ulva prolifera. These findings demonstrate a tight coupling between viral assemblages, and prokaryotic and eukaryotic abundances were influenced by the green tide.


Assuntos
Synechococcus , Ulva , Ulva/genética , Ecossistema , Eutrofização , China
16.
Front Microbiol ; 13: 941323, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35966700

RESUMO

Virioplankton and picoplankton are the most abundant marine biological entities on earth and mediate biogeochemical cycles in the Southern Ocean. However, understanding of their distribution and relationships with environmental factors is lacking. Here, we report on their distribution and relationships with environmental factors at 48 stations from 112.5° to 150°W and 67° to 75.5°S in the Amundsen Sea of West Antarctica. The epipelagic stations were grouped into four clusters based on the virio- and picoplankton composition and abundance. Clusters three and four, which were associated with the ice-edge blooms in the coastal and Amundsen Sea Polynya (ASP) areas, had high abundances of autotrophic picoeukaryotes; this resulted in subsequent high abundances of heterotrophic prokaryotes and viruses. Cluster two stations were in open oceanic areas, where the abundances of autotrophic and heterotrophic picoplankton were low. Cluster one stations were located between the areas of blooms and the oceanic areas, which had a low abundance of heterotrophic prokaryotes and picoeukaryotes and a high abundance of virioplankton. The abundance of viruses was significantly correlated with the abundances of autotrophic picoeukaryotes and Chl-a concentration in oceanic areas, although this reflected a time-lag with autotrophic picoeukaryote and heterotrophic prokaryotes abundances in ice-edge bloom areas. The upwelling of Circumpolar Deep Water (CDW) might have induced the high abundance of autotrophic picoeukaryotes in the epipelagic zone, and the sinking particulate organic carbon (POC) might have induced the high abundance of heterotrophic prokaryotes and virioplankton in the meso- and bathypelagic zones. This study shows that the summer distribution of virio- and picoplankton in the Amundsen Sea of West Antarctica was mainly controlled by upwelling of the CDW and the timing of ice-edge blooms.

17.
Microbiol Spectr ; 10(4): e0058522, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-35862991

RESUMO

Vibrio parahaemolyticus, a widespread marine bacterium, is responsible for a variety of diseases in marine organisms. Consumption of raw or undercooked seafood contaminated with V. parahaemolyticus is also known to cause acute gastroenteritis in humans. While numerous dsDNA vibriophages have been isolated so far, there have been few studies of vibriophages belonging to the ssDNA Microviridae family. In this study, a novel ssDNA phage, vB_VpaM_PG19 infecting V. parahaemolyticus, with a 5,572 bp ssDNA genome with a G+C content of 41.31% and encoded eight open reading frames, was isolated. Genome-wide phylogenetic analysis of the total phage isolates in the GenBank database revealed that vB_VpaM_PG19 was only related to the recently deposited vibriophage vB_VpP_WS1. The genome-wide average nucleotide homology of the two phages was 89.67%. The phylogenetic tree and network analysis showed that vB_VpaM_PG19 was different from other members of the Microviridae family and might represent a novel viral genus, together with vibriophage vB_VpP_WS1, named Vimicrovirus. One-step growth curves showed that vB_VpaM_PG19 has a short incubation period, suggesting its potential as an antimicrobial agent for pathogenic V. parahaemolyticus. IMPORTANCE Vibriophage vB_VpaM_PG19 was distant from other isolated microviruses in the phylogenetic tree and network analysis and represents a novel microviral genus, named Vimicrovirus. Our report describes the genomic and phylogenetic features of vB_VpaM_PG19 and provides a potential antimicrobial candidate for pathogenic V. parahaemolyticus.


Assuntos
Genoma Viral , Microviridae , Vibrio parahaemolyticus , Genômica , Microviridae/classificação , Microviridae/genética , Fases de Leitura Aberta , Filogenia , Vibrio parahaemolyticus/virologia
18.
Front Microbiol ; 13: 853973, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35432264

RESUMO

Shewanella is a common bacterial genus in marine sediments and deep seas, with a variety of metabolic abilities, suggesting its important roles in the marine biogeochemical cycles. In this study, a novel lytic Shewanella phage, vB_SInP-X14, was isolated from the surface coastal waters of Qingdao, China. The vB_SInP-X14 contains a linear, double-strand 36,396-bp with the G + C content of 44.1% and harbors 40 predicted open reading frames. Morphological, growth, and genomic analysis showed that it is the first isolated podovirus infecting Shewanella, with a short propagation time (40 min), which might be resulted from three lytic-related genes. Phylogenetic analysis suggested that vB_SInP-X14 could represent a novel viral genus, named Bocovirus, with four isolated but not classified phages. In addition, 14 uncultured viral genomes assembled from the marine metagenomes could provide additional support to establish this novel viral genus. This study reports the first podovirus infecting Shewanella, establishes a new interaction system for the study of virus-host interactions, and also provides new reference genomes for the marine viral metagenomic analysis.

19.
Data Brief ; 39: 107607, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34869809

RESUMO

Messastrum gracile SE-MC4 is a non-model microalga exhibiting superior oil-accumulating abilities. However, biomass production in M. gracile SE-MC4 is limited due to low cell proliferation especially after prolonged cultivation under oil-inducing culture conditions. Present data consist of next generation RNA sequencing data of M. gracile SE-MC4 under exponential and stationary growth stages. RNA of six samples were extracted and sequenced with insert size of 100 bp paired-end strategy using BGISEQ-500 platform to produce a total of 59.64 Gb data with 314 million reads. Sequences were filtered and de novo assembled to form 53,307 number of gene sequences. Sequencing data were deposited in National Center for Biotechnology Information (NCBI) and can be accessed via BioProject ID PRJNA552165. This information can be used to enhance biomass production in M. gracile SE-MC4 and other microalgae aimed towards improving biodiesel development.

20.
Biology (Basel) ; 10(11)2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34827102

RESUMO

Rabbitfish (Siganidae) are coral reef fish that are distributed across diverse habitats that include estuaries, mangroves, reefs, and even seaweed mats. Given their ecological diversity and natural widespread distributions across the Indo-Pacific region, we were interested to investigate the evolutionary history of this group and patterns of divergence that have contributed to their present-day distributions. In the present study, samples were collected from the South China Sea to study taxonomic and phylogenetic relationships, and divergence times. We investigated the taxonomic relationships among modern rabbitfish species, reconstructed their molecular phylogeny, and estimated divergence times among selected lineages based on a fragment of the mtDNA cytochrome oxidase I (COI) and sequences of the nuclear rhodopsin retrogene (RHO). Our results indicate that modern rabbitfish likely originated in the Indo-West Pacific during the late Eocene [37.4 million years ago (mya)], following which they diverged into three major clades during the Pliocene/Pleistocene. Subsequent diversification and origins of the majority of siganids may likely be associated with episodes of paleo-oceanographic events, including greenhouse and glaciation events (Eocene-Miocene) as well as major plate tectonic events (Pliocene-Pleistocene). Some modern siganid species may naturally hybridize with congeneric species where their geographical ranges overlap. A comprehensive taxonomic analysis revealed that the phylogeny of Siganidae (cladogenesis of Clades I, II, and III) is characterized by divergence in several external morphological characters and morphometric parameters. Our study demonstrates that morphological characteristics, geographical heterogeneity, and environmental change have contributed to siganids' historical diversification.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...